98 research outputs found

    The future is now: single-cell genomics of bacteria and archaea

    Get PDF
    Interest in the expanding catalog of uncultivated microorganisms, increasing recognition of heterogeneity among seemingly similar cells, and technological advances in whole-genome amplification and single-cell manipulation are driving considerable progress in single-cell genomics. Here, the spectrum of applications for single-cell genomics, key advances in the development of the field, and emerging methodology for single-cell genome sequencing are reviewed by example with attention to the diversity of approaches and their unique characteristics. Experimental strategies transcending specific methodologies are identified and organized as a road map for future studies in single-cell genomics of environmental microorganisms. Over the next decade, increasingly powerful tools for single-cell genome sequencing and analysis will play key roles in accessing the genomes of uncultivated organisms, determining the basis of microbial community functions, and fundamental aspects of microbial population biology.National Institutes of Health (U.S.) (R01 HG004863)Burroughs Wellcome Fun

    Simple Bulk Readout of Digital Nucleic Acid Quantification Assays

    Get PDF
    Digital assays are powerful methods that enable detection of rare cells and counting of individual nucleic acid molecules. However, digital assays are still not routinely applied, due to the cost and specific equipment associated with commercially available methods. Here we present a simplified method for readout of digital droplet assays using a conventional real-time PCR instrument to measure bulk fluorescence of droplet-based digital assays. We characterize the performance of the bulk readout assay using synthetic droplet mixtures and a droplet digital multiple displacement amplification (MDA) assay. Quantitative MDA particularly benefits from a digital reaction format, but our new method applies to any digital assay. For established digital assay protocols such as digital PCR, this method serves to speed up and simplify assay readout. Our bulk readout methodology brings the advantages of partitioned assays without the need for specialized readout instrumentation. The principal limitations of the bulk readout methodology are reduced dynamic range compared with droplet-counting platforms and the need for a standard sample, although the requirements for this standard are less demanding than for a conventional real-time experiment. Quantitative whole genome amplification (WGA) is used to test for contaminants in WGA reactions and is the most sensitive way to detect the presence of DNA fragments with unknown sequences, giving the method great promise in diverse application areas including pharmaceutical quality control and astrobiology.Burroughs Wellcome Fund (Career Award at the Scientific Interface

    Sampling distributions and the bootstrap

    Get PDF
    The bootstrap can be used to assess uncertainty of sample estimates

    A Simple, Robust, and High Throughput Single Molecule Flow Stretching Assay Implementation for Studying Transport of Molecules Along DNA

    Get PDF
    We describe a simple, robust and high throughput single molecule flow-stretching assay for studying 1D diffusion of molecules along DNA. In this assay, glass coverslips are functionalized in a one-step reaction with silane-PEG-biotin. Flow cells are constructed by sandwiching an adhesive tape with pre-cut channels between a functionalized coverslip and a PDMS slab containing inlet and outlet holes. Multiple channels are integrated into one flow cell and the flow of reagents into each channel can be fully automated, which significantly increases the assay throughput and reduces hands-on time per assay. Inside each channel, biotin-Ξ»-DNAs are immobilized on the surface and a laminar flow is applied to flow-stretch the DNAs. The DNA molecules are stretched to >80% of their contour length and serve as spatially extended templates for studying the binding and transport activity of fluorescently labeled molecules. The trajectories of single molecules are tracked by time-lapse Total Internal Reflection Fluorescence (TIRF) imaging. Raw images are analyzed using streamlined custom single particle tracking software to automatically identify trajectories of single molecules diffusing along DNA and estimate their 1D diffusion constants

    Targeting individual cells by barcode in pooled sequence libraries

    Get PDF
    Transcriptional profiling of thousands of single cells in parallel by RNA-seq is now routine. However, due to reliance on pooled library preparation, targeting analysis to particular cells of interest is difficult. Here, we present a multiplexed PCR method for targeted sequencing of select cells from pooled single-cell sequence libraries. We demonstrated this molecular enrichment method on multiple cell types within pooled single-cell RNA-seq libraries produced from primary human blood cells. We show how molecular enrichment can be combined with FACS to efficiently target ultra-rare cell types, such as the recently identified AXL+SIGLEC6+ dendritic cell (AS DC) subset, in order to reduce the required sequencing effort to profile single cells by 100-fold. Our results demonstrate that DNA barcodes identifying cells within pooled sequencing libraries can be used as targets to enrich for specific molecules of interest, for example reads from a set of target cells.National Institute of Allergy and Infectious Diseases (U.S.) (U24AI11866803)National Human Genome Research Institute (U.S.) (RM1HG00619307)Broad Institute of MIT and HarvardBurroughs Wellcome Fund (Career Award at the Scientific Interface)National Science Foundation (U.S.). Graduate Research FellowshipNational Human Genome Research Institute (U.S.). Centers of Excellence in Genomic Science (RM1HG00619307)Massachusetts Institute of Technolog

    Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis

    Get PDF
    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles

    Combinatorial drug discovery in nanoliter droplets

    Get PDF
    Combinatorial drug treatment strategies perturb biological networks synergistically to achieve therapeutic effects and represent major opportunities to develop advanced treatments across a variety of human disease areas. However, the discovery of new combinatorial treatments is challenged by the sheer scale of combinatorial chemical space. Here, we report a high-throughput system for nanoliter-scale phenotypic screening that formulates a chemical library in nanoliter droplet emulsions and automates the construction of chemical combinations en masse using parallel droplet processing. We applied this system to predict synergy between more than 4,000 investigational and approved drugs and a panel of 10 antibiotics against Escherichia coli, a model gram-negative pathogen. We found a range of drugs not previously indicated for infectious disease that synergize with antibiotics. Our validated hits include drugs that synergize with the antibiotics vancomycin, erythromycin, and novobiocin, which are used against gram-positive bacteria but are not effective by themselves to resolve gram-negative infections. Keywords: high-throughput screening; nanoliter droplet; drug synergy; antibiotics; small molecule

    Multiplexed enrichment and genomic profiling of peripheral blood cells reveal subset-specific immune signatures

    Get PDF
    Specialized immune cell subsets are involved in autoimmune disease, cancer immunity, and infectious disease through a diverse range of functions mediated by overlapping pathways and signals. However, subset-specific responses may not be detectable in analyses of whole blood samples, and no efficient approach for profiling cell subsets at high throughput from small samples is available. We present a low-input microfluidic system for sorting immune cells into subsets and profiling their gene expression. We validate the system’s technical performance against standard subset isolation and library construction protocols and demonstrate the importance of subset-specific profiling through in vitro stimulation experiments. We show the ability of this integrated platform to identify subset-specific disease signatures by profiling four immune cell subsets in blood from patients with systemic lupus erythematosus (SLE) and matched control subjects. The platform has the potential to make multiplexed subset-specific analysis routine in many research laboratories and clinical settings.National Institute of Allergy and Infectious Diseases (U.S.) (Grant U24 AI118668

    Laser Microdissection of the Alveolar Duct Enables Single-Cell Genomic Analysis

    Get PDF
    Complex tissues such as the lung are composed of structural hierarchies such as alveoli, alveolar ducts, and lobules. Some structural units, such as the alveolar duct, appear to participate in tissue repair as well as the development of bronchioalveolar carcinoma. Here, we demonstrate an approach to conduct laser microdissection of the lung alveolar duct for single-cell PCR analysis. Our approach involved three steps. (1) The initial preparation used mechanical sectioning of the lung tissue with sufficient thickness to encompass the structure of interest. In the case of the alveolar duct, the precision-cut lung slices were 200 ΞΌm thick; the slices were processed using near-physiologic conditions to preserve the state of viable cells. (2) The lung slices were examined by transmission light microscopy to target the alveolar duct. The air-filled lung was sufficiently accessible by light microscopy that counterstains or fluorescent labels were unnecessary to identify the alveolar duct. (3) The enzymatic and microfluidic isolation of single cells allowed for the harvest of as few as several thousand cells for PCR analysis. Microfluidics based arrays were used to measure the expression of selected marker genes in individual cells to characterize different cell populations. Preliminary work suggests the unique value of this approach to understand the intra- and intercellular interactions within the regenerating alveolar duct
    • …
    corecore